A Saccharomyces cerevisiae RAD52 allele expressing a C-terminal truncation protein: activities and intragenic complementation of missense mutations.
نویسندگان
چکیده
A nonsense allele of the yeast RAD52 gene, rad52-327, which expresses the N-terminal 65% of the protein was compared to two missense alleles, rad52-1 and rad52-2, and to a deletion allele. While the rad52-1 and the deletion mutants have severe defects in DNA repair, recombination and sporulation, the rad52-327 and rad52-2 mutants retain either partial or complete capabilities in repair and recombination. These two mutants behave similarly in most tests of repair and recombination during mitotic growth. One difference between these two alleles is that a homozygous rad52-2 diploid fails to sporulate, whereas the homozygous rad52-327 diploid sporulates weakly. The low level of sporulation by the rad52-327 diploid is accompanied by a low percentage of spore viability. Among these viable spores the frequency of crossing over for markers along chromosome VII is the same as that found in wild-type spores. rad52-327 complements rad52-2 for repair and sporulation. Weaker intragenic complementation occurs between rad52-327 and rad52-1.
منابع مشابه
A core activity associated with the N terminus of the yeast RAD52 protein is revealed by RAD51 overexpression suppression of C-terminal rad52 truncation alleles.
C-terminal rad52 truncation and internal deletion mutants were characterized for their ability to repair MMS-induced double-strand breaks and to produce viable spores during meiosis. The rad52-Delta251 allele, encoding the N-terminal 251 amino acids of the predicted 504-amino-acid polypeptide, supports partial activity for both functions. Furthermore, RAD51 overexpression completely suppresses ...
متن کاملGenetic analysis of the gyrase A-like domain of DNA topoisomerase II of Saccharomyces cerevisiae.
We have undertaken a genetic analysis of heat-sensitive and cold-sensitive mutations in TOP2, the gene encoding yeast DNA topoisomerase II. Deletion mapping was used to localize 14 heat-sensitive and four cold-sensitive top2 mutations created by a method biased toward mutations in the 3' two-thirds of the gene. The mutations all appear to be located in the region of DNA topoisomerase II that sh...
متن کاملDifferent mating-type-regulated genes affect the DNA repair defects of Saccharomyces RAD51, RAD52 and RAD55 mutants.
Saccharomyces cerevisiae cells expressing both a- and alpha-mating-type (MAT) genes (termed mating-type heterozygosity) exhibit higher rates of spontaneous recombination and greater radiation resistance than cells expressing only MATa or MATalpha. MAT heterozygosity suppresses recombination defects of four mutations involved in homologous recombination: complete deletions of RAD55 or RAD57, an ...
متن کاملFunctional analyses of the C-terminal half of the Saccharomyces cerevisiae Rad52 protein
The Saccharomyces cerevisiae Rad52 protein is essential for efficient homologous recombination (HR). An important role of Rad52 in HR is the loading of Rad51 onto replication protein A-coated single-stranded DNA (ssDNA), which is referred to as the recombination mediator activity. In vitro, Rad52 displays additional activities, including self-association, DNA binding and ssDNA annealing. Althou...
متن کاملBipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae.
SGS1 in yeast encodes a DNA helicase with homology to the human BLM and WRN proteins. This group of proteins is characterized by a highly conserved DNA helicase domain homologous to Escherichia coli RecQ and a large N-terminal domain of unknown function. To determine the role of these domains in SGS1 function, we constructed a series of truncation and helicase-defective (-hd) alleles and examin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 133 1 شماره
صفحات -
تاریخ انتشار 1993